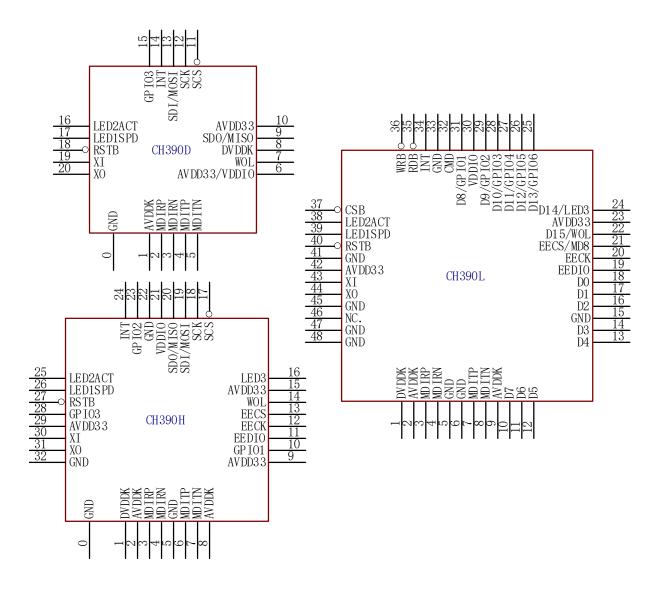

CH390 Datasheet

V1.3 https://wch-ic.com

1. Overview

CH390 is an industrial-grade Ethernet controller chip with its own 10/100M Ethernet Media Access Controller (MAC) and Physical Layer (PHY), supporting CAT3, 4, 5 for 10BASE-T and CAT5, 6 for 100BASE-TX connections, supporting HP Auto-MDIX, low-power consumption design, and complying with IEEE 802.3u specification. CH390 has built-in 16K bytes SRAM, supports 3.3V or 2.5V parallel interface and SPI serial interface for compatibility with various MCUs, MPUs, DSPs and other controllers.

The following figure shows the block diagram of CH390.



2. Features

- It comes with its own internal Ethernet Media Access Controller (MAC) and Physical Layer (PHY).
- CH390L supports 8-bit and 16-bit parallel interface, CH390H and CH390D supports SPI serial interface.
- Built-in unique Ethernet MAC address, no additional purchase or distribution, no external EEPROM.
- CH390H/D provides SPI slave interface, supports SPI clock modes 0 and 3 with clock speeds up to 50MHz.
- Integrated low-power 10/100M transceiver based on DSP algorithm implementation Transceiver.
- Support Auto-MDIX to exchange TX/RX and automatically identify positive and negative signal lines.
- Support 10BASE-T and 100BASE-TX and Auto-Negotiation.
- Support UTP CAT5E, CAT6 twisted pair cable, support 120 meters transmission distance.
- Support wake-up frames, link state changes, and magic packet events for remote wake-up.
- Support IEEE 802.3x flow control.
- Support IPv4 TCP/UDP and IPv6 TCP/UDP checksum generation and checking.

- Built-in LDO, CH390H/L support independent I/O interface power supply for different voltage processors or MCUs.
- Built-in 50Ω matching resistor, built-in crystal oscillator capacitor, with lower BOM cost.
- Support optional external EEPROM configuration chip.
- Small-size QFN20, QFN32 and LQFP48 packages are available.

3. Package

Package form	Size	Pin spacing		Package description	Order model
QFN20	3.0*3.0mm	0.40mm	15.7mil	Quad Flat No-Lead Package	CH390D
QFN32×5	5.0*5.0mm	0.50mm	19.7mil	Quad Flat No-Lead Package	СН390Н
LQFP48	7.0*7.0mm	0.50mm	19.7mil	Low Profile Quad Flat Pack	CH390L

Note: Pin 0# refers to the EPAD of the QFN package.

4. Pin

CH390D Pin No.	CH390H Pin No.	CH390L Pin No.	Pin name	Туре	Pin description
2, 3	3、4	3、4	MDIRP \ MDIRN	I/O	Differential input in 10BASE-T/100BASE-TX MDI mode. Differential output in 10BASE-T/100BASE-TX MDIX mode.
4、5	6、7	7、8	MDITP、 MDITN	I/O	Differential output in 10BASE-T/100BASE-TX MDI mode. Differential input in 10BASE-T/100BASE-TX MDIX mode.
8	1	1	DVDDK	Р	External 0.1uF (0.1uF \sim 1uF) capacitor to ground should be placed closely to the chip.
1	2	2	AVDDK	Р	External 1uF capacitor to ground should be placed closely to the chip.
-	8	9	AVDDK	Р	Optional pin, external 1uF (0.1uF \sim 1uF) capacitor to ground is recommended.
6	29	42	AVDD33	Р	3.3V main power input, 1uF ground capacitor is recommended to be placed close to the chip. Or 0.1 uF ~ 4.7uF, supports 10uF but needs to be connected in parallel with 0.1uF.
10	9、15	23	AVDD33	Р	Optional 3.3V power input. Recommended connection, optional 1uF (0.1uF ~ 4.7uF) capacitor to ground.
-	21	30	VDDIO	Р	 3.3V or 2.5V power input for I/O interface. It is recommended that 0.1uF (0.1uF~1uF) capacitor to ground be placed close to the chip. Note: The VDDIO of the CH390D is shorted to AVDD33 and only supports 3.3V supplies.
19	30	43	XI	I	Crystal input, external 25MHz crystal end is required, or external clock input.
20	31	44	XO	О	The crystal output is inverted and needs to be connected externally to the other end of the 25MHz crystal.
0	0, 5, 32	5、6、15、 33、41、 45	GND	Р	Common ground terminal.
-	22	47、48	GND	Р	Optional ground terminal, recommended connection.
16	25	38	LED2ACT	0	Connection indication LED. In LED mode 1, it is a combination LED of internal PHY link and carrier sense signal. In LED mode 0, it is only the LED of the carrier sense signal of the internal PHY.
17	26	39	LED1SPD	О	Speed indication LED.A low-level output indicates that the internal PHY is operating in 100M mode.

CH390D Pin No.	CH390H Pin No.	CH390L Pin No.	Pin name	Туре	Pin description
					Float indicates that the internal PHY is operating in 10M mode.
-	16	24	LED3	O, PD	Full-duplex indication LED. In LED mode 1, a low output indicates that the internal PHY is operating in full-duplex mode, and a float indicates that the internal PHY is operating in half-duplex mode. In LED mode 0, a low-level output indicates that the internal PHY is operating in 10M mode, and a floating level indicates that the internal PHY is operating in 100M mode. More LED modes are controlled by MAC register 57H. <i>Note: Not applicable to CH390L's 16-bit mode and CH390D</i> .
-	10、23	31、29	GPIO1、 GPIO2	I/O, PD	 Bidirectional three-state universal input and output, default is input. Controlled by bit 1 and bit 2 of MAC registers 1Eh, 1Fh. <i>Note: The GPIO2 of the CH390D is internally shorted to SDI, disabling the setting of GPIO2.</i>
15	28	28	GPIO3	I/O, PD	Bidirectional three-state general-purpose inputs and outputs, defaulting to inputs. Controlled by bit 3 of MAC registers 1Eh, 1Fh.
-	_	22、24、 25~29、 31	D15~D8	I/O, PD	 Bits 8 ~ 15 of the processor data bus Dbus are used for the 16-bit parallel port. In 16-bit mode, bits 8 to 15 as the processor data bus. In 8-bit mode, as GPIO or application-specific I/O.
		25~27	GPIO6 ~GPIO4	O, PD	In 8-bit mode, it is used as a general-purpose output. These pins can only be used as general-purpose output pins and are controlled by register 1Fh.
-	-	10~14、 16~18	D7~D0	I/O, PD	Bits 0 to 7 of the processor data bus Dbus are used for 8- bit or 16-bit parallel interfaces.
-	11	19	EEDIO	I/O, PD	EEPROM data input and output pins, default is low.
-	12	20	EECK	O, PD	EEPROM clock output, default is low.
-	13		EECS	O, PD	EEPROM chip select output, active high, default is low.
-	-	21	MD8	O, PD	This pin also serves as the configuration pin for the data width of the CH390L parallel port. During power-on reset, if this pin is in 8-bit mode when pulled high by an external resistor, the data width is 8 bits. Otherwise, it is 16-bit mode with 16-bit data width.
7	14	22	WOL	O, PD	Network wake-up output, polarity configurable via EEPROM Note: Not applicable to CH390L's 16-bit mode.
11	17	-	SCS	Ι	SPI chip select input, active low.

CH390D Pin No.	CH390H Pin No.	CH390L Pin No.	Pin name	Туре	Pin description
12	18	-	SCK	I, PD	SPI clock input, mode 0 or 3 supported.
13	19	-	SDI	I, PD	SPI serial data input, connected to the MOSI of the processor SPI host.
9	20	-	SDO	O, PD	SPI serial data output, connected to the MISO of the processor SPI host.
14	24	34	INT	О	Interrupt request output, active high by default. The polarity can be set via EEPROM configuration or MAC register 39H.
18	27	40	RSTB	I, PU	Reset input, active low.
-	-	32	CMD	I, PD	Parallel Interface. This cycle command type selection input. Selects access to the data port when high. When low, access to the INDEX address index port is selected
-	-	35	RDB	I, PD	The processor parallel port reads the control signal input. The default is active low and the polarity is configurable via EEPROM.
-	-	36	WRB	I, PD	Processor parallel port write control signal input. The default is active low and the polarity is configurable via EEPROM.
-	-	37	CSB	I, PU	Processor parallel port chip select input. The default is active low and the polarity is configurable via EEPROM.
-	-	46	NC.	-	Empty pins.

Note: I = *Input;*

O = Output;

I/O = *Input/Output;*

P = *Power supply;*

PD = *Internal pull-down resistor;*

PU = *Internal pull-up resistor.*

5. Register Description

Note: In this manual, (H) corresponds to CH390H and CH390D, (L) corresponds to CH390L; if (H) or (L) is not indicated, it applies to CH390H, CH390D and CH390L.

Register	Description	Offset	Default value after reset
NCR	Network Control Register	00h	00h
NSR	Network Status Register	01h	00h
TCR	TX Control Register	02h	00h
TSRA	TX Status Register A	03h	00h
TSRB	TX Status Register B	04h	00h
RCR	RX Control Register	05h	00h
RSR	RX Status Register	06h	00h
ROCR	Receive Overflow Counter Register	07h	00h
BPTR	Back Pressure Threshold Register	08h	37h
FCTR	Flow Control Threshold Register	09h	38h
FCR	RX/TX Flow Control Register	0Ah	00h
EPCR	EEPROM&PHY Control Registers	0Bh	00h
EPAR	EEPROM&PHY Address Registers	0Ch	40h
EPDRL	EEPROM&PHY Low Byte Data Register	0Dh	XXh
EPDRH	EEPROM&PHY High Byte Data Register	0Eh	XXh
WCR	Wake Up Control Register	0Fh	00h
			Built-in unique Ethernet
PAR	Ethernet MAC Physical Address Register	10h~15h	address, configurable
			override by EEPROM
MAR	Multicast Address Hash Table Register	16h~1Dh	XXh
GPCR	General-purpose Control Register	1Eh	71h
GPR	General-purpose Register	1Fh	XXh
TRPAL	TX Memory Read Pointer Address Low Byte	22h	00h
TRPAH	TX Memory Read Pointer Address High Byte	23h	00h
RWPAL	RX Memory Write Pointer Address Low Byte	24h	00h
RWPAH	RX Memory Write Pointer Address High Byte	25h	0Ch
VID	Vendor ID	28h~29h	1C00h
PID	Product ID	2Ah~2Bh	9151h(H)/9150h(L)
CHIPR	CHIP Revision	2Ch	2Bh(H)/2Ah(L)
TCR2	Transmit Control Register 2	2Dh	00h
ETXCSR(L)	Early transmission control/status register	30h	00h
ATCR(H)	Automatic transmission control register	30h	00h
TCSCR	Transmit Check Sum Control Registers	31h	00h
RCSCSR	Receive Check Sum Control Status Register	32h	00h
MPAR	MII PHY Address Register	33h	00h
LEDCR(L)	LED Control Register	34h	00h
SBCR(H)	SPI Bus Control Register	38h	44h
INTCR	INT Pin Control Register	39h	00h
ALNCR(H)	SPI Byte Align Error Counter Register	4Ah	00h

Table	5-1	Register	list
Table	5-1	Register	nsı

Register	Description	Offset	Default value after reset
SCCR	System Clock Turn ON Control Register	50h	00h
RSCCR	Resume System Clock Control Register	51h	XXh
RLENCR	RX Packet Length Control Register	52h	00h
BCASTCR	RX Broadcast Control Register	53h	00h
INTCKCR(H)	INT Pin Clock Output Control Register	54h	00h
MPTRCR	Memory Pointer Control Register	55h	00h
MLEDCR(H)	More LED Control Register	57h	00h
MRCMDX	Memory Data Pre-Fetch Read Command Without Address Increment Register 70h(H)/F0h(XXh
MRCMDX1	Memory Read Command Without Pre-Fetch and Without Address Increment Register	71h(H)/F1h(L)	XXh
MRCMD	MRCMD Memory Data Read Command with Address 72h(H) Increment Register		XXh
MRRL	Memory Data Read Address Register Low Byte	74h(H)/F4h(L)	00h
MRRH	Memory Data Read Address Register High Byte	75h(H)/F5h(L)	00h
MWCMDX	Memory Data Write Command Without Address Increment Register	76h(H)/F6h(L)	XXh
MWCMD	Memory Data Write Command Without Address Increment Register	78h(H)/F8h(L)	XXh
MWRL	Memory Data Write Address Register Low Byte	7Ah(H)/FAh(L)	00h
MWRH	Memory Data Write Address Register High Byte	7Bh(H)/FBh(L)	00h
TXPLL	TX Packet Length Low Byte Register	7Ch(H)/FCh(L)	XXh
TXPLH	TX Packet Length High Byte Register	7Dh(H)/FDh(L)	XXh
ISR	Interrupt Status Register	7Eh(H)/FEh(L)	00h
IMR	Interrupt Mask Register	7Fh(H)/FFh(L)	00h

Note: In the register description, the default form is as follows.

Reset Value:

- 1 Bit set to logic one
- 0 Bit set to logic zero
- X No default value
- *P* = *Power on reset default value*

H = *Hardware reset default value*

S = *Software reset default value*

E = Default value from EEPROM

T = Default value from strap pin

h = Hex, format

Reserved bits are undefined on read/write access.

Access Type:

- RO = Read Only
- *RW* = *Read/Write*
- R/C = Read and Clear
- RW/C1 = read/write, clear by write 1
- *WO* = *Write Only*

Bit	Name	Description	Access	Default value
7	Reserved	Reserved	RO	P0
6	WAKEEN	Enable Wakeup Function. Clearing this bit will also clear all wake-up event states, and this bit will not be affected by a software reset. 1 = Enable; 0 = Disable.	RW	P0
5	Reserved	Reserved	RO	00
4	MACPD	Write after read fetch inverse to enable wake-up frame notification.	RW	PS0
3	FDX	Duplex Mode of the Internal PHY. 1 = Full-duplex; 0 = Half-duplex.	RO	PS0
2:1	LBK	Loopback Mode Bit: 2 1 0 0 Normal; 0 1 MAC internal loopback; 1 0 Reserved; 1 1 Reserved.	RW	PS00
0	RST	Software Reset and Auto-Clear after 10us 1 = Reset state; 0 = Non-reset state.	RW	PO

5.1 Network Control Register (00h)

5.2 Network Status Register (01h)

Bit	Name	Description	Access	Default value
7	SPEED	Speed of Internal PHY This bit has no meaning when LINKST=0. 1 = 10Mbps; 0 = 100Mbps.	RO	Х
6	LINKST	Link Status of Internal PHY 1 = Link OK; 0 = Link failed.	RO	Х
5	WAKEST	Wakeup Event Status Clears by read or write 1. This bit will not be affected after software reset. 1 = Wakeup event; 0 = No wakeup event.	RW/C1	P0
4	Reserved	Reserved	RO	0
3	TX2END	 TX Packet Index B Complete Status Auto-Clear at begin transmitting of TX packet index B and Auto-Set at the end of transmitting of TX packet index B. 1 = Transmit completion or idle of packet index B; 0 = Packet index B transmit in progress. 	RW/C1	PS1

2	TX1END	 TX Packet Index A Complete Status Auto-Clear at begin transmitting of TX packet index A and Auto-Set at the end of transmitting of TX packet index A. 1 = Transmit completion or idle of packet index A; 0 = Packet index A transmit in progress. 	RW/C1	PS1
1	RXOV	RX Memory Overflow Status 1 = RX memory Overflow; 0 = Non-overflow.	RO	PS0
0	RXRDY	RX Packet Ready 1 = Have packet in RX memory; 0 = No packet in RX memory.	RO	PS0

5.3 TX Control Register TCR (02h)

Bit	Name	Description	Access	Default value
7	Reserved	Reserved	RO	0
6	TJDIS	Transmit Jabber Timer (2048 bytes) Control 1 = Disabled; 0 = Enable.	RW	PS0
5	Reserved	Reserved	RO	0
4	PAD_DIS2	PAD Appends for Packet Index B 1 = Disable; 0 = Enable.	RW	PS0
3	CRC_DIS2	CRC Appends for Packet Index B 1 = Disable; 0 = Enable.	RW	PS0
2	PAD_DIS1	PAD Appends for Packet Index A 1 = Disable; 0 = Enable.	RW	PS0
1	CRC_DIS1	CRC Appends for Packet Index A 1 = Disable; 0 = Enable.	RW	PS0
0	TXREQ	TX Request. Auto-Clear after Sending Completely 1 = Transmit in progress; 0 = No transmit in progress.	RW	PS0

5.4 TX Status Register TSRA for Packet Index A(03h)

Bit	Name	Description	Access	Default value
		Transmit Jabber Time Out		
7	ТЈТО	It is set to indicate that the transmitted frame is truncated due	RO	PS0
/	1310	to more than 2048 bytes are transmitted.	KU	F 50
		1 = Timeout; 0 = Non-timeout.		
		Loss of Carrier		
6	LC	It is set to indicate the loss of carrier during the frame	RO	PS0
0		transmission. It is not valid in internal loopback mode.		
		1 = Loss of carrier; 0 = No carrier have been loss.		
		No Carrier		
		It is set to indicate that there is no carrier signal during the		
5	NC	frame transmission. It is not valid in internal loopback mode.	RO	PS0
		1 = No carrier during transmit;		
		0 = Normal carrier status during transmit.		

4	LCOL	Late Collision It is set when a collision occurs after the collision window of 64 bytes. 1 = Late collision; 0 = No late collision.	RO	PS0
3	COL	Collision Packet It is set to indicate that the collision occurs during transmission. 1 = Have been collision; 0 = No collision.	RO	PS0
2	EC	Excessive Collision It is set to indicate that the transmission is aborted due to 16 excessive collisions. 1 = 16 excessive collisions; 0 = Less than 16 collisions.	RO	PS0
1:0	Reserved	Reserved	RO	0

5.5 TX Status Register TSRB for Packet Index B(04h)

Bit	Name	Description	Access	Default value
7	ТЈТО	Transmit Jabber Time Out It is set to indicate that the transmitted frame is truncated due to more than 2048 bytes are transmitted. 1 = Timeout; 0 = Non-timeout.	RO	PS0
6	LC	Loss of Carrier It is set to indicate the loss of carrier during the frame transmission. It is not valid in internal loopback mode. 1 = Loss of carrier; 0 = No carrier have been loss.	RO	PS0
5	NC	No Carrier It is set to indicate that there is no carrier signal during the frame transmission. It is not valid in internal loopback mode. 1 = No carrier during transmit; 0 = Normal carrier status during transmit.	RO	PS0
4	LCOL	Late Collision It is set when a collision occurs after the collision window of 64 bytes. 1 = Late collision; 0 = No late collision.	RO	PS0
3	COL	Collision Packet It is set to indicate that the collision occurs during transmission. 1 = Have been collision; 0 = No collision.	RO	PS0
2	EC	Excessive Collision It is set to indicate that the transmission is aborted due to 16 excessive collisions. 1 = 16 excessive collisions; 0 = Less than 16 collisions.	RO	PS0
1:0	Reserved	Reserved	RO	0

Bit	Name	Description	Access	Default value
7	Reserved	Reserved	RW	PS0
6	WTDIS	Watchdog Timer Disable 1 = When set, the Watchdog Timer (2048 bytes) is disabled; 0 = Otherwise it is enabled.	RW	PS0
5	Reserved	Reserved	RO	PS0
4	DIS_CRC	Discard CRC Error Packet 1 = Enable; 0 = Disable.	RW	PS0
3	ALL	Receive All Multicast To receive packet with multicast destination address 1 = Enable; 0 = Disable.	RW	PS0
2	RUNT	Receive Runt Packet To receive packet with size less than 64-bytes 1 = Enable; 0 = Disable.	RW	PS0
1	PRMSC	Promiscuous Mode To receive packet without destination address checking 1 = Enable; 0 = Disable.	RW	PS0
0	RXEN	RX Enable 1 = Enable; 0 = Disable.	RW	PS0

5.6 RX Control Register RCR (05h)

5.7 RX Status Register RSR (06h)

Bit	Name	Description	Access	Default value
7	RF	Runt Frame It is set to indicate that the size of the received frame is smaller than 64 bytes. 1 = Affirmative; 0 = Negative.	RO	PS0
6	MF	Multicast Frame It is set to indicate that the received frame has a multicast address. 1 = Affirmative; 0 = Negative.	RO	PS0
5	LCS	Late Collision Seen It is set to indicate that a late collision is found during the frame reception. 1 = Affirmative; 0 = Negative.	RO	PS0
4	RWTO	Receive Watchdog Time-Out It is set to indicate that it receives more than 2048 bytes. 1 = Affirmative; 0 = Negative.	RO	PS0
3	PLE	Physical Layer Error It is set to indicate that a physical layer error is found during the frame reception. 1 = Affirmative; 0 = Negative.	RO	PS0
2	AE	Alignment Error It is set to indicate that the received frame ends with a non-byte aligned. 1 = Affirmative; 0 = Negative.	RO	PS0

1	CE	CRC Error It is set to indicate that the received frame ends with a CRC error. 1 = Affirmative; 0 = Negative.	RO	PS0
0	FOE	RX Memory Overflow Error It is set to indicate that a RX memory overflow error happens during the frame reception. 1 = Affirmative; 0 = Negative.	RO	PS0

5.8 Receive Overflow Counter Register ROCR (07h)

Bit	Name	Description	Access	Default value
7	RXFU	Receive Overflow Counter Overflow This bit is set when the ROC has an overflow condition. 1 = Affirmative; 0 = Negative.	R/C	PS0
6:0	ROC	Receive Overflow Counter This is a statistic counter to indicate the received packet count upon FIFO overflow.	R/C	PS0

5.9 Back Pressure Threshold Register BPTR (08h)

Bit	Name	Description	Access	Default value
		Back Pressure High Water Overflow Threshold		
		MAC will generate the jam pattern when RX SRAM		
7:4	BPHW	free space is lower than this threshold value.	RW	PS3
		The default is 3K-byte free space.		
		Note: Do not exceed SRAM size.		
3:0	Reserved	Reserved	RO	0

5.10 Flow Control Threshold Register FCTR (09h)

Bit	Name	Description	Access	Default value
7:4	HWOT	RX Memory High Water Overflow Threshold Send a pause packet with pause time=FFFFH when the RX memory free space is less than this value. If this value is zero, it means no RX flow control. The default value is 3K-byte free space. <i>Note: Do not exceed SRAM size.</i>	RW	PS3
3:0	LWOT	RX Memory Low Water Overflow Threshold Send a pause packet with pause time=0000H when RX memory free space is larger than this value. This pause packet is enabled after the high water pause packet is transmitted. The default memory free space is 8K-byte. <i>Note: Do not exceed SRAM size.</i>	RW	PS8

5.11 RX/TX Flow Control Register FCR (0Ah)

Bit Name Description Access Default valu
--

r		i i		
		Force TX Pause Packet with 0000H		
7	TXP0	Set to TX pause packet with pause time field is 0000H.	RW	PS0
		Auto-Clears after pause packet transmission completion.		
		Force TX Pause Packet with FFFFH		
6	TXPF	Set to TX pause packet with pause time field is FFFFH.	RW	PS0
		Auto-Clears after pause packet transmission completion.		
		TX Pause Packet Enable		
5	TXPEN	Enables the pause packet for high/low water threshold	RW	PS0
5	IAFEN	control in Full-Duplex mode.	K W	P 50
		1 = Enable; 0 = Disable.		
		Back Pressure Mode		
		This mode is for Half-Duplex mode only. It generates a		
4	BKPA	jam pattern when any packet comes and RX SRAM is	RW	PS0
		over BPHW of MAC register 8H.		
		1 = Enable; 0 = Disable		
		Back Pressure Mode		
		This mode is for Half-Duplex mode only. It generates a		
3	BKPM	jam pattern when a packet's DA matches and RX SRAM	RW	PS0
		is over BPHW of MAC register 8H.		
		1 = Enable; 0 = Disable.		
		RX Pause Packet Status, Latch and Read Clearly		
		When there has been packet received, this bit will be		
2	RXPS	latched. This bit is cleared after read.	R/C	PS0
		1 = Has been receive pause packet;		
		0 = No pause packet received.		
		RX Pause Packet Current Status		
1	RXPCS	1 = Received pause packet timer down-count in progress;	RO	PS0
		0 = Pause packet timer value is zero.		
_		Flow Control Enable	D.117	DCO
0	FLCE	1 = Enable; 0 = Disable	RW	PS0

5.12 EEPROM & PHY Control Register EPCR(0Bh)

Bit	Name	Description	Access	Default value
7:6	Reserved	Reserved	RO	0
		Reload EEPROM		
5	REEP	Set one to reload EEPROM.	RW	PO
		Driver needs to clear it before to enable this function.		
	WEP	Write EEPROM Enable		
4		Set this bit to one before the operation of write EEPROM.	RW	PO
		1 = Enable; 0 = Disable.		
		EEPROM or PHY Operation Select		
3	EPOS	0 = Select EEPROM; $1 = $ Select PHY.	RW	PO
	LFU5	Note: The current version only supports PHY, selecting	ĸw	FU
		EEPROM is not yet implemented.		

2	ERPRR	EEPROM Read or PHY Register Read Command Set 1 to read EEPROM or PHY register.	RW	PO
1	ERPRW	EEPROM Write or PHY Register Write Command	RW	P0
		Set 1 to write EEPROM or PHY register. EEPROM Access Status or PHY Access Status		
0	ERRE	1 = The EEPROM or PHY access is in progress 0 = Completion of the EEPROM or PHY access	RO	PO

5.13 EEPROM & PHY Address Register EPAR (0Ch)

Bit	Name	Description	Access	Default value
7:6	IPHY ADR	PHY Address bit 1 and 0, the PHY address bit [4:2] is force to 0. Force to 01 in application.	RW	P01
5:0	EROA	EEPROM Word Address or PHY Register Number.	RW	P0

5.14 EEPROM & PHY Data Register EPDRL/EPDRH (EE_PHY_L:0Dh, EE_PHY_H:0Eh)

Bit	Name	Description	Access	Default value
7:0	EPDRL	EEPROM or PHY Low Byte Data	RW	PO
/.0	EE_PHY_L	The low byte data read from or write to EEPROM or PHY.	KW	PO
7.0	EPDRH	EEPROM or PHY High Byte Data	RW	PO
7:0	EE_PHY_H	The high byte data read from or write to EEPROM or PHY.	ĸw	P0

5.15 Wake Up Control Register WCR (0Fh)

Bit	Name	Description	Access	Default value
7:6	Reserved	Reserved	RO	0
5	LINKEN	Link Status Change Wake up Event To control the link status change event in WOL pin function. This bit will not be affected after software reset. 1 = Enable; 0 = Disable.	RW	P0
4	SAMPLEEN	Sample Frame Wake up Event To control the sample frame matched event in WOL pin function. This bit will not be affected after software reset. 1 = Enable; 0 = Disable	RW	P0
3	MAGICEN	Magic Packet Wake up Event To control the Magic packet event in WOL pin function. This bit will not be affected after software reset. 1 = Enable; 0 = Disable	RW	P0
2	LINKST	Link Status Change Event Occurred 1 = Link change event occurred; 0 = No link change event.	RO	P0
1	SAMPLEST	Sample Frame Event Occurred 1 = Sample frame matched event occurred;	RO	P0

		0 = No sample frame matched.		
		Magic Packet Event Occurred		
)	MAGICST	1 = Magic packet received;	RO	PO
		0 = No magic packet received.		

5.16 Ethernet MAC Physical Address Register PAR0~PAR5 (PAB0~PAB5:10h~15h)

Bit	Name	Description	Access	Default value
7:0	PAR5	Physical Address Byte 5 (15h)	RW	Е
7:0	PAR4	Physical Address Byte 4 (14h)	RW	Е
7:0	PAR3	Physical Address Byte 3 (13h)	RW	Е
7:0	PAR2	Physical Address Byte 2 (12h)	RW	Е
7:0	PAR1	Physical Address Byte 1 (11h)	RW	Е
7:0	PAR0	Physical Address Byte 0 (10h)	RW	Е

Note: Each chip has a unique Ethernet MAC address built in and will replace this built-in address if the EEPROM configuration data is valid.

5.17 Ethernet MAC Physical Address Register MAR0~MAR7(MAB0~MAB5:16h~1Dh)

Bit	Name	Description	Access	Default value
7:0	MAR7	Multicast Address Hash Table Byte 7 (1Dh)	RW	Х
7:0	MAR6	Multicast Address Hash Table Byte 6 (1Ch)	RW	Х
7:0	MAR5	Multicast Address Hash Table Byte 5 (1Bh)	RW	Х
7:0	MAR4	Multicast Address Hash Table Byte 4 (1Ah)	RW	Х
7:0	MAR3	Multicast Address Hash Table Byte 3 (19h)	RW	Х
7:0	MAR2	Multicast Address Hash Table Byte 2 (18h)	RW	X
7:0	MAR1	Multicast Address Hash Table Byte 1 (17h)	RW	Х
7:0	MAR0	Multicast Address Hash Table Byte 0 (16h)	RW	Х

5.18 General-purpose Control Register (1Eh)

Bit	Name	Description	Access	Default value
7	Reserved	Reserved	RO	PH0
		Define the input/output direction of pin GPIO6~4.		
6:4	GPC64	These bits are forced to "1" and pins GPIO6 to 4 can only be	RO	P111
		output.		
		Define the input/output direction of pin GPIO3.		
3	GPC3	1 = Pin GPIO3 in output mode;	RW	PO
		0 = Pin GPIO3 in input mode.		
		Define the input/output direction of pin GPIO2.		
2	GPC2	1 = Pin GPIO2 in output mode; $0 = Pin GPIO3$ in input mode.	RW	PO
2	0102	Note: The CH390D's GPIO2 is internally shorted to SDI,	IX W	10
		disabling the setting of this bit to 1.		
		Define the input/output direction of pin GPIO1.		
1	GPC1	1 = Pin GPIO1 in output mode;	RW	PO
		0 = Pin GPIO1 in input mode.		
0	Reserved	Reserved	RO	P1

Note: CH390L This register is applicable to 8-bit mode, for 16-bit mode, refer to register 34h.

5.19 General-purpose Register (1Fh)

Bit	Name	Description	Access	Default value
7	Reserved	Reserved	RO	0
6:4	GPO	The output data of GPIO6 ~ 4 is only applicable to the 8-bit mode of CH390L. These bits are output to pins GPIO6~4, respectively. <i>Note: These bits of CH390H and CH390D are reserved</i> .	RW	PO
3	GPIO3	Output data or input status of GPIO3. When GPC3 of register 1EH is 1, the value of this bit is reflected to pin GP3. When GPC3 of register 1EH is 0, the value of this bit to be read is reflected from correspondent pin of GP3.	RW	PO
2	GPIO2	Output data or input status of GPIO2. When GPC2 of register 1EH is 1, the value of this bit is reflected to pin GPIO2. When GPC2 of register 1EH is 0, the value of this bit to be read is reflected from correspondent pin of GPIO2.	RW	PO
1	GPIO1	Output data or input status of GPIO1. When GPC1 of register 1EH is 1, the value of this bit is reflected to pin GPIO1. When GPC1 of register 1EH is 0, the value of this bit to be read is reflected from correspondent pin of GPIO1.	RW	РО
0	PHYPD	 PHY Power Down Control, Sleep mode setting. 1 = Power down PHY; 0 = Power up PHY. In Sleep mode, power off the PHY but keep the system clock module on. Note: If restarting PHY power, it is recommended to access CH390 after 100us. 	RW	PE1

Note: CH390L The GPO and GPIO in this register are only applicable to 8-bit mode, for 16-bit mode, refer to register 34h.

5.20 TX Memory Read Pointer Address Register TRPAL/TRPAH(22h~23h)

Bit	Name	Description	Access	Default value
7:0	TRPAH	TX Memory Read Pointer Address High Byte (23h)	RO	PS0
7:0	TRPAL	TX Memory Read Pointer Address Low Byte (22h)	RO	PS0

5.21 RX Memory Write Pointer Address Register RWPAL/RWPAH(24h~25h)

Bit	Name	Description	Access	Default value
7:0	RWPAH	RX Memory Write Pointer Address High Byte (25h)	RO	PS,0Ch
7:0	RWPAL	RX Memory Write Pointer Address Low Byte (24h)	RO	PS,00h

5.22 Vendor ID Register VIDL/VIDH (28h~29h)

Bit Name Description Access	Default value
-----------------------------	---------------

ľ	7:0	VIDH	Vendor ID High Byte (29h)	RO	PE,1Ch
	7:0	VIDL	Vendor ID Low Byte (28h)	RO	PE,00h

5.23 Product ID Register PIDL/PIDH (2Ah~2Bh)

Bit	Name	Description	Access	Default value
7:0	PIDH	Product ID High Byte (2Bh)	RO	PE,91h
7:0	PIDL	Product ID Low Byte (2Ah)	RO	PE,51h(H)/50h(L)

5.24 Chip revision identification code CHIPR (2Ch)

Bit	Name	Description	Access	Default value
7:0	CHIPR	CHIP Revision	RO	P,2Bh(H)/2Ah(L)

5.25 Transmit control register 2 TCR2 (2Dh)

Bit	Name	Description	Access	Default value
7	LED	LED Mode 1 = LED mode 1; 0 = LED mode 0.	RW	PE0
,		The default is mode 0, which can be configured via EEPROM. For CH390H/D, more configurations can be found in register 57h.		120
6	RLCP	Retry Late Collision Packet Re-transmit the packet with late-collision. 1 = Enable; 0 = Disable.	RW	P0
5:4	Reserved	Reserved	RW	P0
3:0	IFGS	Inter-Frame Gap Setting 0XXX = 96-bit; 1000 = 64-bit; 1001 = 72-bit; 1010 = 80-bit; 1011 = 88-bit; 1100 = 96-bit; 1101 = 104-bit; 1110 = 112-bit; 1111 = 120-bit.	RW	Р00

5.26 Early Transmit Control/Status Register (L) ETXCSR (30h)

Bit	Name	Description	Access	Default value
7	I ETE	Early Transmit Enable 1: Enable bits [2:0]; 0: DISABLE.	RW	PS0
6	Reserved	Reserved	RO	PS0
5	Reserved	Reserved	RO	PS0
4:2	Reserved	Reserved	RO	000
		Early Transmit Threshold		
		Start transmit when data write to TX FIFO reach the byte-		
		count threshold.		

		Bit-1	Bit-0	Threshold
		0	0	12.5%
1:0	ETT	0	1	25%
		1	0	50%
		1	1	75%

5.27 Auto-Transmit Control Register (H) ATCR (30h)

Bit	Name	Description	Access	Default value
7	_	Auto-Transmit Control 1 = Auto-Transmit enabled. Packet transmitted automatically when end of write TX buffer 0 = Auto-Transmit disabled. When transmit packet, need to set MAC register 2H bit 0 to "1"	RW	PS0
6:2	Reserved	Reserved	RO	P00
1:0	Reserved	Reserved	RW	PS0

5.28 Transmit Check Sum Control Register TCSCR (31h)

Bit	Name	Description	Access	Default value
7:5	Reserved	Reserved	RO	0
4	IPv6TCPCSE	IPv6 TCP CheckSum Generation 1 = Enable; 0 = Disable.	RW	PS0
3	IPv6UDPCSE	IPv6 UDP CheckSum Generation 1 = Enable; 0 = Disable.	RW	PS0
2	UDPCSE	UDP CheckSum Generation 1 = Enable; 0 = Disable.	RW	PS0
1	TCPCSE	TCP CheckSum Generation 1 = Enable; 0 = Disable.	RW	PS0
0	IPCSE	IP CheckSum Generation 1 = Enable; 0 = Disable.	RW	PS0

5.29 Receive Check Sum Status Register RCSCSR (32h)

Bit	Name	Description	Access	Default value
7	UDPS	UDP CheckSum Status	RO	PS0
/	UDP5	1 = Checksum fail; $0 =$ No UDP checksum error.	KU	P 50
6	TCPS	TCP CheckSum Status	RO	PS0
0	ICFS	1 = Checksum fail; $0 =$ No TCP checksum error.	KU	P 50
5	5 IPS	IP CheckSum Status	RO	PS0
5	11.2	1 = Checksum fail; $0 =$ No IP checksum error.		
4	UDPP	UDP Packet of Current Received Packet	RO	PS0
4	4 UDPP	1 = UDP packet; $0 = Non UDP$ packet.	KU	
3	3 TCPP	TCP Packet of Current Received Packet	RO	PS0
5		1 = TCP packet; 0 = Non TCP packet.	KU	130
2	IPP	IP Packet of Current Received Packet	RO	PS0

		1 = IP packet; $0 = Non IP$ packet.		
		Receive CheckSum Checking Enable When set, the checksum status (bit 7~2) will be stored		
1	RCSEN	in bit 7:2 of packet's first byte of RX packets status	RW	PS0
		header respectively.		
		1 = Enable; 0 = Disable.		
		Discard CheckSum Error Packet		
0	DCSE	When set, if IPv4/TCP/UDP checksum field is error,	DW	PS0
	DUSE	this packet will be discarded.	RW	P 50
		1 = Enable; 0 = Disable.		

5.30 MII PHY Address Register MPAR (33h)

Bit	Name	Description	Access	Default value
7	ADR_EN	Redefine PHY Address 1: Enable; 0: Disable.	RW	HPS0
6:5	Reserved	Reserved	RO	HPS0
4:0	EPHYADR	Redefined PHY Address Bit 4~0.	RW	HPS01

5.31 LED Pin Control Register (L) LEDCR (34h)

Bit	Name	Description	Access	Default value
7:2	Reserved	Reserved	RO	PS0
1	GPIO	LED act as General-purpose signals in 16-bit mode 1: Pin 38/39 (LED2/1) act as the general-purpose pins that are controlled by registers 1Eh bit 2/1 and 1Fh bit 2/1 respectively. 0: Disable.	RW	P0
0	MII	LED act as SMI signals in 16-bit mode 1: Pin 38/39 (LED2/1) act as the MII Management Interface mode. In this mode, the LED1 act as data (MDIO) signal and the LED2 act as sourced clock (MDC) signal. These two-pin are controlled by registers 0Bh,0Ch, and 0Dh. 0: Disable.	RW	P0

5.32 SPI Bus Control Register (H) SBCR (38h)

Bit	Name	Description	Access	Default value
7:5	Reserved	Reserved	RO	PO
4:3	Reserved	Reserved	RO	P00
2	SCS_SPIKE	Eliminate SPI_CSB Spike 1 = Eliminate about 2ns SPI_CSB spike	RW	PE1
1:0	Reserved	Reserved	RO	P00

5.33 INT Pin Control Register INTCR (39h)

Bit	Name	Description	Access	Default value
7:2	Reserved	Reserved	RO	PS0
1	INT_TYPE	INT Pin Output Type Control	RW	PET0

			1 = INT Open-drain output; $0 = INT$ push-pull output.		
()	INT_POL	INT Pin Polarity Control 1 = INT active low; 0 = INT active high.	RW	PET0

5.34 SPI Byte Align Error Counter Register (H) ALNCR (4Ah)

Bit	Name	Description	Access	Default value
7:0	AIN FRR	SPI Clock Byte Align Error Counter The counter to count the byte align error of SCK at end of CSN. The maximum value is 255. Write any value to clear 0.	RO	P00

5.35 System Clock Turn ON Control Register SCCR(50h)

Bit	Name	Description		Default value
7:1	Reserved	Reserved		0
0	Stop Internal System Clock, Stop mode setting.1 = Entering shutdown mode, with the system clock off and		W	P0
		51h.		

5.36 Resume System Clock Control Register RSCCR (51h)

When the INDEX port set to 51H, it will exit the Stop mode, and the internal system clock is turn ON. It is recommended to access CH390 after 2ms.

5.37 RX Packet Length Control Register RLENCR (52h)

Bit	Name	Description	Access	Default value
		RX packet length filter.		
7	RXLEN	1 = Enable RX packet length filter;	RW	PS0
		0 = Not enable RX packet length filter.		
6:5	Reserved	Reserved	RO	P00
		Maximum RX Packet Length Allowed (unit 64-byte)		
4.0	MAXRXL	The RX packet will be discarded if the data length is	RW	PS0
4:0	EN	more than this count.	ĸw	P50
		Note: All bits 0 means no length limitation.		

5.38 RX Broadcast Control Register BCASTCR (53h)

Bit	Name	Description	Access	Default value
		New RX Broadcast Packet Control Mode		
7:6	DC EN	0X = broadcast packets controlled by MAC registers 16h~1Dh;	RW	PS0
/:0	6 BC_EN	10 = Not to accept broadcast packet;	ĸw	
		11 = Enable packet length filter of broadcast packet.		
5	Reserved	Reserved	RO	PO
		Maximum RX Broadcast Packet Length Allowed (unit 64-byte)		
4:0	MAXBCLEN	The RX packet will be discarded if the data length is more than	RW	PS0
1	1			

	this count.	
	Note: All bits 0 means no length limitation.	

5.39 INT Pin Clock Output Control Register INTCKCR (54h)

Bit	Name	Description	Access	Default value
		Select Control Method for INT Pin		
7	INT_CTL	1 = Enable INT pin in this register;	RW	PS0
		0 = INT pin output controlled by MAC register 39H.		
	CK_UNIT	Select Clock Output Duty Cycle Width Unit		
6		1 = 2.6 ms;	RW	PS0
		0 = 81.92us.		
5	Reserved	Reserved		P0
4:0	DUTY_LE	Clock Output Duty Cycle Width	RW	PS0
4:0	N	Note: All bits 0 means INT pin is controlled by register 39H.	ΓW	r 30

5.40 Memory Pointer Control Register MPTRCR (55h)

Bit	Name	Description	Access	Default value
7:2	Reserved	Reserved	RO	P00
1	RST_TX	Reset TX Memory Pointer 1 = Reset TX write/read memory address, Auto-Cleared after 1us	RW	PS0
0	RST_RX	Reset RX Memory Pointer 1 = Reset RX write/read memory address, Auto-Cleared after 1us	RW	PS0

5.41 More LED Control Register (H) MLEDCR (57h)

Bit	Name	Description	Access	Default value
	LED MO	New LED Mode		
7	_	1 = LED types in bit 2:0;	RW	P0
	D3	0 = The old LED mode 0 or 1 function.		
6:3	Reserved	Reserved	RO	P00
	LED_POL	The Reverse Polarity of LED Type		
2		1 = LED in high active;	RW	PO
		0 = LED in low active.		
1:0	LED_TYP	LED Type	RW	D 00
	Е	Note: See following table.	κw	P00

LED Type	LED2ACT	LED1SPD	LED3(pin 16)
00	Link	Traffic	Full-Duplex
01	Link & Traffic	Speed100M	Full-Duplex
10	Traffic	Speed100M	Speed10M
11	Link	Traffic100M	Traffic10M

5.42 Memory Data Pre-Fetch Read Command without Address Increment Register MRCMDX (70h(H)/F0h(L))

Bit	Name	Description	Access	Default value
-----	------	-------------	--------	---------------

		Memory Read Command		
		Read data from RX SRAM. After the read of this command,		
7:0	MRCMDX	the read pointer of internal SRAM is unchanged. And the	RO	Х
		CH390 starts to pre-fetch the SRAM data to internal data		
		buffers.		

5.43 Memory Data Read Command without Address Increment Register MRCMDX1 (71h(H)/F1h(L))

Bit	Name	Description	Access	Default value
7:0	MRCMDX1	Memory Read Command Read data from RX SRAM. After the read of this command, the read pointer of internal SRAM is unchanged. CH390 does not pre-fetch memory data.	RO	Х

5.44 Memory Data Read Command with Address Increment Register MRCMD (72h(H)/F2h(L))

Bit	Name	Description	Access	Default value
7:0	MRCMD	Memory Read Command Read data from RX SRAM. After executing this command, add 1 to the read pointer for CH390H/D and CH390L in 8- bit mode, and add 2 to the read pointer for CH390L in 16-bit mode.	RO	х

5.45 Memory Data Read address Register MRRL/MRRH (74h~75h(H)/F4h~F5h(L))

Bit	Name	Description	Access	Default value
7:0	MDRAH	Memory Data Read_ addresses High Byte. It will be set to 0Ch, when IMR bit7 =1 (75h)	RW	PS0
7:0	MDRAL	Memory Data Read_ address Low Byte. (74h)	RW	PS0

5.46 Memory Data Write Command without Address Increment Register MWCMDX (76h(H)/F6h(L))

Bit	Name	Description	Access	Default value
7:0	MWCMDX	Write data to TX SRAM. After the write of this command, the write pointer is unchanged	WO	Х

5.47 Memory Data Write Command with Address Increment Register MWCMD (78h(H)/F8h(L))

Bit	Name	Description	Access	Default value
7:0		Write Data to TX SRAM After executing this command, for CH390H/D and CH390L in 8-bit mode, the write pointer is added by 1; for CH390L in 16-bit mode, the write pointer is added by 2.	I W/()	Х

5.48 Memory Data Write Address Register MWRL/MWRH (7Ah~7Bh (H)/FAh~FBh (L))

Bit	Name	Description	Access	Default value
7:0	MDWAH	Memory Data Write_address High Byte. (7Bh)	RW	PS0
7:0	MDWAL	Memory Data Write_address Low Byte. (7Ah)	RW	PS0

5.49 TX Packet Length Register TXPLL/TXPLH (7Ch~7Dh(H)/FCh~FDh(L))

Bit	Name	Description	Access	Default value
7:0	TXPLH	TX Packet Length High byte. (7Dh)	RW	Х
7:0	TXPLL	TX Packet Length Low byte. (7Ch)	RW	Х

5.50 Interrupt Status Register ISR (7Eh(H)/FEh(L))

Bit	Name	Description	Access	Default value
7	IOMODE	0 = 16-bit mode $1 = 8$ -bit mode	RO	TO
/	IOMODE	Note: This bit is reserved for CH390H/D.	RO	10
6	Reserved	Reserved	RO	R0
5	LNKCHG	Link Status Change	RW/C1	DSO
3	LINKCHG	1: Affirmative; 0: Negative.	KW/CI	PS0
		Transmit Under-run		
4	UDRUN	1: Affirmative; 0: Negative.	RW/C1	PS0
		Note: This bit is reserved for CH390H/D.		
3	Dee	Receive Overflow Counter Overflow	RW/C1	PS0
3	ROO	1: Affirmative; 0: Negative.		P50
2	ROS	Receive Overflow	RW/C1	PS0
2	RUS	1: Affirmative; 0: Negative.	KW/CI	P50
1	РТ	Packet Transmitted	DW/C1	DSO
		1: Affirmative; 0: Negative.	RW/C1	PS0
0	PR	Packet Received	RW/C1	PS0
U	PK PK	1: Affirmative; 0: Negative.	KW/UI	r50

5.51 Interrupt Mask Register IMR (7Fh(H)/FFh(L))

Bit	Name	Description	Access	Default value
7	PAR	 Pointer Auto-return Mode Enable the TX/RX Memory Read/Write Pointer to automatically return to the starting address when the PAR pointer exceeds the TX/RX memory size. When this bit is set, MAC register 75h is automatically set to 0Ch if the RX memory size is 13K bytes. 1: Enable; 0: Disable. 		PS0
6	Reserved			R0
5	LNKCHGI	Enable Link Status Change Interrupt 1: Enable; 0: Disable.	RW	PS0
4		Enable Transmit Under-run Interrupt 1: Enable; 0: Disable. Note: This bit is reserved for CH390H/D.	RW	PS0
3	ROOI	Enable Receive Overflow Counter Overflow Interrupt	RW	PS0

		Enable; 0: Disable.		
2	ROI	Enable Receive Overflow Interrupt	RW	PS0
2	KÜI	1: Enable; 0: Disable.	K VV	P 50
1	1 PTI	Enable Packet Transmitted Interrupt	RW	PS0
1		1: Enable; 0: Disable.		r 50
0 PRI	Enable Packet Received Interrupt	RW	PS0	
		1: Enable; 0: Disable.	IX W	r 30

6. EEPROM Format

The word in this table refers to two bytes, 16 bits of data.

Name	Word	Offset	Description
MAC address	0	0~5	6 Byte Ethernet Address
			Bit 1:0=01: Update vendor ID and product ID
			Bit 3:2=01: Accept setting of WORD6 [4:0]
			Bit 5:4=01: Reserved, recommended to set to 00;
Auto-load		< -	Bit 7:6=01: Reserved, recommended to set to 01;
Control	3	6~7	Bit 9:8=01: Reserved, recommended to set to 00;
			Bit 11:10=01: Accept setting of WORD7 [7];
			Bit 13:12=01: Reserved, recommended to set to 00;
			Bit 15:14=01: Reserved, recommended to set to 00.
Vendor ID	4	8~9	2-byte vendor ID (Default: 1C00h)
Product ID	5	10~11	2-byte product ID (Default: 9151h(H)/9150h(L))
			CH390H and CH390D:
			When word 3 bit [3:2] =01, these bits can control the INT pins polarity.
			Bit2:0: Reserved
			Bit3: INT pin is active low when set 1 (default 0: active high);
			Bit4: INT pin is open-drain (default 0: push-pull output);
			Bit 15:5: Reserved.
			CH390L:
Pin control	6	12~13	When word 3 bit [3:2] =01, these bits can control the CSB, WRB, RDB and
			INT pins polarity.
			Bit0: CSB pin is active high when set 0 (default 1: active low);
			Bit1: WRB pin is active high when set 0 (default 1: active low);
			Bit2: RDB pin is active high when set 0 (default 1: active low);
			Bit3: INT pin is active low when set 1 (default 0: active high);
			Bit4: INT pin is open-drain when set 1 (default 0: push-pull output);
			Bit 15:5: Reserved.
			CH390H and CH390D, Accept setting except for bit 7:
			Bit0: WOL pin is active low when set 1 (default 0: active high);
			Bit1: WOL pin is in pulse mode when set 1 (default 0: level mode);
			Bit2: Magic wakeup event is enabled when set 1 (default 0: disable);
			Bit3: link change wakeup event is enabled when set 1 (default 0: disable);
			Bit6:4: Reserved (default 0);
Wake-up mode			Bit7: LED mode 1 when set 1 (default 0: mode 0);
control	7	14~15	Bit15:8: Reserved (default 0).
control			CH390L, Accept setting except for bit 7:
			Bit0: WOL pin is active low when set 1 (default 0: active high);
			Bit1: WOL pin is in pulse mode when set 1 (default 0: level mode);
			Bit2: Magic wakeup event is enabled when set 1 (default 0: disable);
			Bit3: link change wakeup event is enabled when set 1 (default 0: disable);
			Bit6:4: Reserved (default 0);
			Bit7: LED mode 1 when set 1 (default 0: mode 0);

Bit13:12: LED2ACT act as WOL when set 10 in 16-bit	t mode for CH390L;
Bit15:14: Reserved (default 0).	

7. PHY Register

Register Name	Address	Default value			
Control Register	0x00	3100h			
Status Register	0x01	7849h			
PHY Identifier	0x02~0x03	7311h/2411h			
Auto-Negotiation Advertisement	0x04	01E1h			
Auto-Negotiation Link Partner Ability	0x05	0000h			
Auto-Negotiation Expansion	0x06	0004h			

Table 7-1 PHY register description

Note: 1. Please refer to the IEEE 802.3 specification and the CH182DS2 manual for the above registers. 2. Please refer to the manual of CH182DS2 for the extended registers.

8. Function Register

8.1 SPI Serial Interface

The CH390H and CH390D support a slave mode SPI interface where an external SPI host (from the microcontroller MCU or CPU) provides the serial clock SCK, chip select SCS, and serial input data MOSI, and the serial output data MISO is driven by the CH390. MOSI is an SPI host output that varies on the falling edge of SCK and is sampled by the SDI pin of the CH390 on the rising edge of SCK. MISO is driven by the SDO pin of CH390, varies on the falling edge of SCK, and is sampled by the SDI pin of SCK.

One SPI operation is started on the falling edge of SCS and stopped on the rising edge of SCS. Each SCK cycle corresponds to one data bit, and the high bit comes first when transmitting, and every 8 data bits form one byte. When the SPI is idle (i.e., SCS is high), SCK is held low for SPI mode 0 and high for SPI mode 3.

SPI (Command Format:			
		Comma	nd Phase (MOSI pin)	Data Phase (MOSI pin)
	SPI		Byte 0 [7:0]	Byte 1
		Opcode	Register Address	Register Data
	Register Write	1	A6~A0	D7~D0

	Comman	d Phase (MOSI pin)	Data Phase (MOSI pin)		
SPI	I	Byte 0 [7:0]	Byte 1		
	Opcode	Register Address	Register Data		
Register Read	0	A6~A0	D7~D0		
Memory Dummy Read	0	1110000	D7~D0		

	Commar	nd Phase (MOSI pin)	Data Phase (MOSI pin)		
SPI	Byte 0 [7:0]		Byte 1~N		
	Opcode	Register Address	Register Data		
Memory Dummy Read Without Pre-fetch	0	1110001	(D7~D0)*N		

Note 1: N can be $1 \sim 4$.

	Commar	nd Phase (MOSI pin)	Data Phase (MOSI pin)		
SPI		Byte 0 [7:0]	Byte 1~N		
	Opcode	Register Address	Register Data		
Memory Write	1	1111000	(D7~D0)*N		

	Commai	nd Phase (MOSI pin)	Data Phase (MOSI pin)		
SPI	Byte 0 [7:0]		Byte 1~N		
	Opcode	Register Address	Register Data		
Memory Read	0	1110010	(D7~D0)*N		

	Commar	nd Phase (MOSI pin)	Data Phase (MOSI pin)		
SPI		Byte 0	Byte 1~N		
	Opcode	Register Address	Opcode		
Auto-Transmit	1	1111100	(D7~D0)*N		

Note 2:

Byte 1: Transmit Length bit 7~0 of n-byte; Byte 2: FDh; Byte 3: Transmit Length bit 15~8 of n-byte; Byte 4: F8h; Byte 5~n+4: 5~n+4: n-byte transmit data.

Note 3: This command burst is used only when register 30h bit 7 is set.

8.2 Parallel Interface

The CH390L supports either a 16-bit or 8-bit passive parallel bus interface, and access to the CH390L is selected via the chip select CSB. The CSB pin is active low by default and can be redefined via EEPROM configuration. Two ports can be accessed through the host interface, an INDEX address index port and a DATA port. The INDEX port is selected when the pin CMD = 0 and the DATA port is selected when CMD = 1. The contents of the INDEX port is the register address of the DATA port. The address of this register must be stored in the INDEX port before any register can be accessed.

8.3 Direct Memory Access Control

The CH390 provides DMA capability to simplify the access of the internal memory. After the programming of the starting address of the internal memory and then issuing a dummy read/write command to load the current data to internal data buffer, the desired location of the internal memory can be accessed by the read/write command registers. After each read/write operation, the memory address will be automatically incremented according to the current data bit width (8 or 16 bits), and the data at the next location will be automatically loaded into the internal data buffer. It is noted that the data of the first access (the dummy read/write command) in a sequential burst should be ignored because that the data was the contents of the last read/write command.

The internal memory size is 16K bytes. The first location of 3K bytes is used for the data buffer of the packet transmission. The other 13K bytes are used for the buffer of the receiving packets. So in the write memory operation, when the bit 7 of IMR is set, the memory address increment will wrap to location 0 if the end of address (i.e. 3K) is reached. In a similar way, in the read memory operation, when the bit 7 of IMR is set, the memory address increment will wrap to location 0. If the end of address increment will wrap to location 0. So is reached.

8.4 Packet Transmission

Two packets can be stored in the transmit buffer at the same time, indexed A and B. Their status can be read from the TSRA and TSRB registers, respectively. the CRC and PAD additional data can be controlled by the TCR register.

After system reset, the send start address is 0 and the packet index is A. When sending a packet, first write the data to the send buffer through the write command register MWCMD, then write the byte count to the TXPLL and TXPLH registers, and finally set the TCR register bit 0 to 1 to turn on packet sending. The data of the next (index B) packet can be written to the transmit buffer before the transmission of packet A is finished. After the transmission of packet A is completed, the length of packet B is written to the TXPLL and TXPLH registers and the TCR register is set to send packet B. Subsequent packets are sent in the same manner in the order of

A, B, A, B... alternately.

8.5 Packet Reception

The receive buffer is a ring buffer. After system reset, the receive buffer starts at 0C00h. Each packet contains a 4-byte frame header, data field, and CRC. the format of the 4-byte frame header is: 01h, status, data length low byte, and data length high byte.

8.6 Remote Package Wake-up

If you use the wake-up frame function, you need to configure the relevant registers (Table 8-1) first, and write the wake-up frame configuration template through EEPROM and PHY control registers in turn, refer to EEPROM and PHY control register EPCR, EEPROM and PHY address register EPAR, EEPROM and PHY data register EPDRL/EPDRH.

MCU enables its own interrupt wake-up function to read out and invert the MACPD of the network control register NCR before MCU sleeps and then writes it. At this time, MAC will no longer receive new packets, and when a wake-up frame or magic packet is received, the WOL pin generates an interrupt to wake up the MCU.

If the interrupt wake-up function is used again, the MACPD of the network control register NCR will be read out and reversed before the MCU sleeps, then the MAC will no longer receive new packets, and the WOL pin will generate an interrupt to wake up the MCU when a wake-up frame or magic packet is received.

Filter register 0	Byte mask register 0								
Filter register 1				Byte mas	k register 1				
Filter register 2		Byte mask register 2							
Filter register 3		Byte mask register 3							
Filter register 4	Reserved	Command3	Reserved	Command2	Reserved	Command 1	Reserved	Command 0	
Filter register 5	Of	fset 3	Of	fset 2	0	ffset 1	Of	fset 0	
Filter register 6		Filter 1 Filter 0							
Filter register 7		Filt	er 3			Filte	er 2		

Table 8-1 Structure of the remote wakeup frame filter register group

9. Electrical Characteristics

9.1 Absolute Maximum Ratings

(critical or exceeding the absolute maximum value will probably cause the chip to work improperly or even be damaged)

Symbol	Parameter	Min.	Тур.	Max.	Unit
AVDD33	Supply Voltage	-0.4	3.3	4.0	V
VDDIO	Interface I/O pin power supply voltage	-0.4	2.5 or 3.3	4.0	V
V _{DDIO}	Voltage on control interface pins (VDDIO power supply)	-0.4		VDDIO+0.4	V
V _{IOX}	Voltage on Ethernet pins (AVDD33 power supply)	-0.4		AVDD33+0.4	V
T _A	Ambient Temperature	-40		+85	°C
Ts	Storage Temperature Range	-65		+150	°C
V _{ESD}	HBM ESD tolerant voltage for external pins		6		KV

Table 9-1 Absolute maximum value parameter table

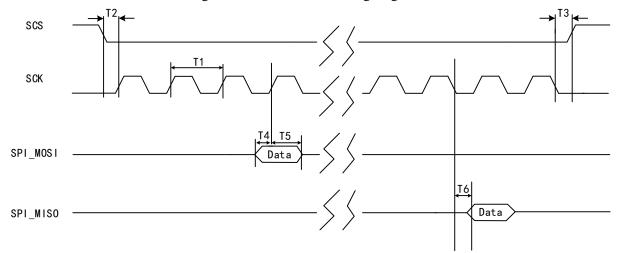
9.2 Supply Current Characteristics

Table 9-2 Current consumption table (AVDD33 = 3.3V, VDDIO = 3.3V, TA = $25^{\circ}C$)

Sumbol	Parameter Condition		Ту	Unit	
Symbol	Falameter	Condition	390H/D	390L	Unit
	100BASE-TX	Transfer status	57	58	A
	IUUBASE-IA	Idle status	57	57	mA
_		Transfer status	54	55	
I _{DD}	10BASE-T	Idle status	26	26	mA
	Sleep Mode	PHY power off, system clock on	5.4	5.6	
	Stop Mode	PHY power off, system clock off	0.2	0.2	mA

9.3 Operating Voltage and DC Characteristics

Table 9-3 DC characteristics parameter table (AVDD33 = 3.3V, VDDIO = 3.3V, TA = 25°C)


Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
AVDD33	Supply Voltage	AVDD33 pins	3.2	3.3	3.45	V
VDDIO	Interface I/O pin supply voltage	VDDIO pins	2.3	3.3	3.5	V
VIL	Input Low Voltage		0		0.8	V
V _{IH}	Input High Voltage		2.0		VDDIO	V
I _{IL}	Input Low Leakage Current	Input voltage 0V	-5		5	uA
I _{IH}	Input High Leakage Current	Input voltage VDDIO	-5		5	uA
Vol	Output Low Voltage	IOL = 8mA			0.4	V
V _{OH}	Output High Voltage	IOH = -8mA	VDDIO- 0.4			V
Rpu	Resistance Value of the Built-in Pull-up Resistor		35	60	100	KΩ
Rpd	Resistance Value of the Built-in Pull-		35	60	100	KΩ

	down Resistor					
N7	RX+/RX- Common Mode Input	100Ω input		1 65		V
V _{ICM}	Voltage	impedance		1.65		v
V _{TD100}	100TX+/- Differential Output Voltage	Peak to peak		2.0		V
V _{TD10}	10TX+/- Differential Output Voltage	Peak to peak		4.6		V
V	Voltage threshold for power supply low		26	2.0	3.1	V
V_{LVR}	voltage reset		2.6	2.9	3.1	v

9.4 DC Electrical Characteristics

9.4.1 SPI Timing

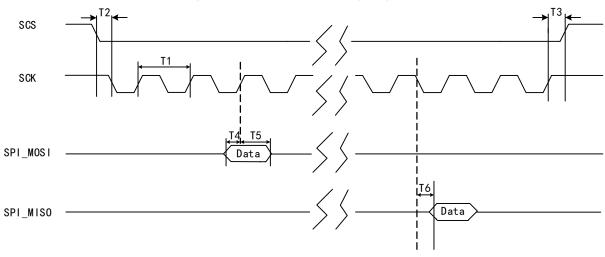

Figure 9-1 SPI M0 mode timing diagram

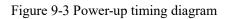
Table 9-4 SPI M0 mode parameter table (AVDD33 = 3.3V, VDDIO = 3.3V, TA = 25°C)

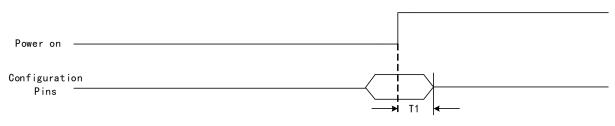
Symbol	Parameter	Min.	Тур.	Max.	Unit
T1	SCK Frequency	-	40	50	MHz
T2	SCS falling edge to SCK rising edge	8	-	-	ns
T3	SCK falling edge to SCS rising edge	8	-	-	ns
T4	SDI/MOSI build-up time before SCK rising edge	3	-	-	ns
T5	SDI/MOSI hold time after SCK rising edge	2	-	-	ns
T6	SDO/MISO output delay after SCK falling edge	2	-	7	ns

Figure 9-2 SPI M3 mode timing diagram

Symbol	Parameter		Тур.	Max.	Unit
T1	SCK Frequency	-	40	50	MHz
T2	SCS falling edge to SCK falling edge	0	-	-	ns
Т3	SCK rising edge to SCS rising edge	0	-	-	ns
T4	SDI/MOSI build-up time before SCK rising edge	3	-	-	ns
T5	SDI/MOSI hold time after SCK rising edge	2	-	-	ns
T6	SDO/MISO output delay after SCK falling edge	2	-	7	ns

Table 9-5 SPI M3 mode parameter table (AVDD33 = 3.3V, VDDIO = 3.3V, TA = 25°C)	,


9.4.2 Oscillator & Crystal Timing


Table 9-6 Oscillator & Crystal timing parameters table

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
TCKF	Crystal Frequency	Recommended within 20ppm	24.9995	25	25.0005	MHz
TPWH	High clock pulse width		15	20	25	ns
TPWL	Low clock pulse width		15	20	25	ns

Note: The XI and XO pins of the CH390 already have the two oscillation capacitors required for an external crystal with a load capacitance of 12pF respectively, and only the crystal is required externally. If an external crystal with a load capacitance of 20pF is selected, then XI and XO need to add an additional 15pF oscillation capacitance to ground respectively.

9.4.3 Power On Reset Timing

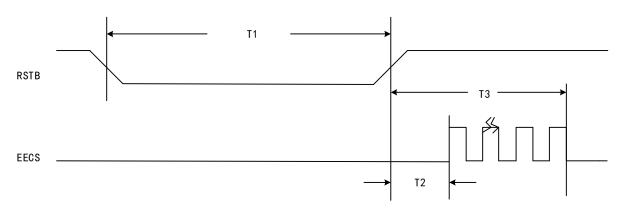


Table 9-7-1 Power-up timing parameters table	e
--	---

	1 01				
Symbol	Parameter	Min.	Тур.	Max.	Unit
T1	Configuration pin hold time after power on reset	17	-		ms

Figure 9-4 Reset timing diagram

Symbol	Parameter	Min.	Тур.	Max.	Unit		
T1	RSTB Low Period	1	-	-	ms		
T2POR	Power on reset to EECS high	-	22	25	ms		
T2	RSTB high to EECS high	1	-	4	ms		
Т3	RSTB high to EECS burst end	1	-	4	ms		

Table	9-7-2	Reset	timing	paramete	ers table
10010	· · -	100000	uning	paramete	10 10010

Note:

- (1) Approximately 22ms after power-on reset, CH390 loads configuration values from EEPROM and completes initialization.
- (2) Approximately 2ms after RSTB pin reset, CH390 loads configuration values from EEPROM and completes initialization.
- (3) It is recommended that the external MCU host or processor access CH390 after 25ms of power-on reset and 4ms of RSTB pin reset.

9.4.4 Parallel Port I/O Read Operation Timing Figure 9-5 CH390L processor I/O rea

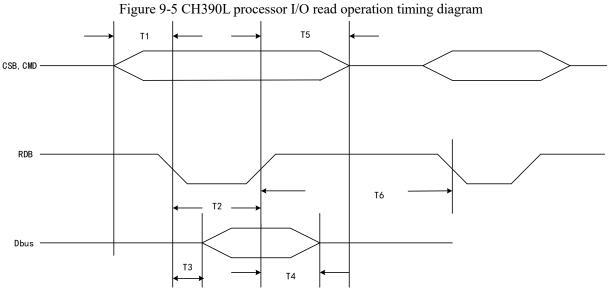
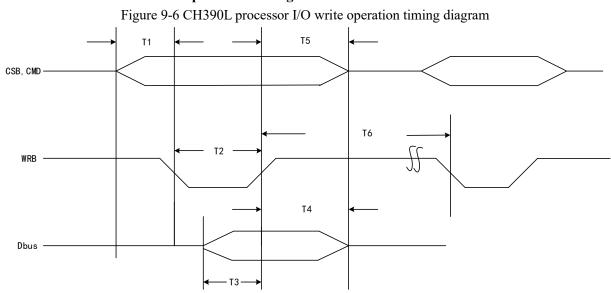



Table 9-8 Parallel port I/O read operation timing parameters table

(AVDD33 = 3.3V, VDDIO = 3.3V, TA = 25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit
T1	CSB, CMD valid to RDB valid	0			ns
T2	RDB valid width	20			ns
Т3	Data bus (Dbus) output delay time	2		18	ns
T4	RDB Invalid to Data bus (Dbus) Invalid	2			ns
T5	RDB invalid to CSB, CMD invalid	0			ns
T6	RDB is not valid until the next RDB/WRB is valid when the register is read	15			ns
T2+T6	RDB invalid to next IRDB/WRB valid when read memory with F0h or F2h register	30			ns

9.4.5 Parallel Port I/O Write Operation Timing

Table 9-9 Parallel port I/O write operation timing parameters table

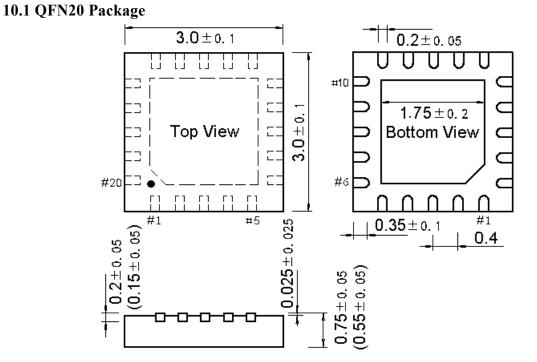
Symbol	Parameter		Тур.	Max.	Unit
T1	CSB, CMD valid to RDB valid	0			ns
T2	RDB valid width	12			ns
T3	Data bus (Dbus) input setup time	8			ns
T4	Data bus (Dbus) input hold time	3			ns
T5	WRB invalid to CSB, CMD invalid	0			ns
T6	WRB invalid to next WRB/RDB when writing to address index or data port	20			ns
T2+T6	WRB valid to next WRB/RDB valid when writing to memory	20			ns

$(AVDD33 = 3.3V, VDDIO = 3.3V, TA = 25^{\circ}C)$

9.4.6 Transmission Status LED Switching Time

Table 9-10 Transmission status LED time parameters table

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _{ON}	LED on time when transmitting	-	16	-	ms
T _{OFF}	LED off time when transmitting	120	-	-	ms

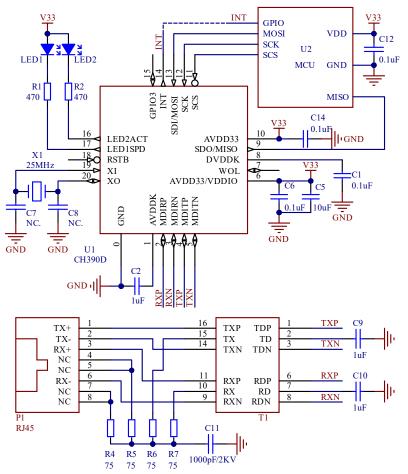

V1.3

CH390 Datasheet

than $\pm 0.2mm$.

10.Package

Note: The unit of dimensioning is mm (millimeter).

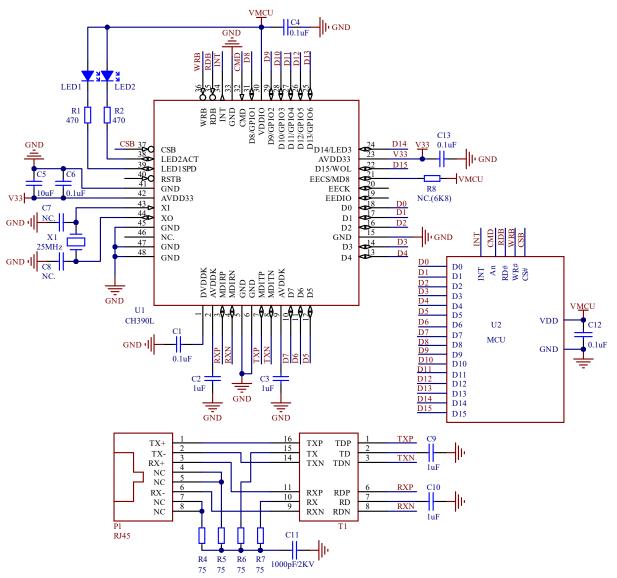

The pin center spacing is the nominal value without error, and the dimensional error other than that is no more

10.2 QFN32×5 Package

10.3 LQFP48 Package

11.Application

11.1 Single 3.3V SPI Application


CH390D has built-in part of the oscillation capacitor of crystal X1, and C7 and C8 can be adjusted according to the crystal parameters. For X1 with a load capacitance of 12pF, C7 and C8 are not required; for X1 with a load capacitance of 20pF, C7 and C8 are recommended to be 15pF each.

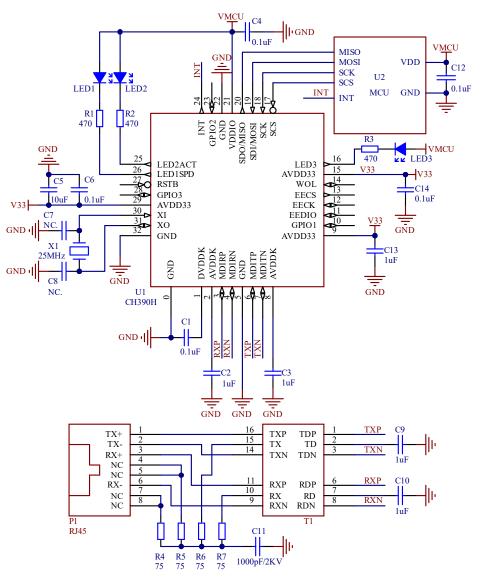
T1 is an ethernet network transformer. Its center tap is connected to ground through capacitors C9 and C10 respectively. Do not connect to any power supply.

CH390D has a built-in Ethernet 50Ω impedance matching resistor. Do not connect an external 49.9 Ω or 50Ω resistor, which is equivalent to voltage drive.

CH390D is smaller in size, and the MCU power supply is also 3.3V. Non-3.3V controllers can use CH390H instead.

11.2 Independent Voltage Parallel Port Application

CH390L has built-in part of the oscillation capacitor of crystal X1, and C7 and C8 can be adjusted according to the crystal parameters. For X1 with a load capacitance of 12pF, C7 and C8 are not required; for X1 with a load capacitance of 20pF, C7 and C8 are recommended to be 15pF each.


T1 is an ethernet network transformer. Its center tap is connected to ground through capacitors C9 and C10 respectively. Do not connect to any power supply.

CH390L has a built-in Ethernet 50Ω impedance matching resistor. Do not connect an external 49.9 Ω or 50Ω resistor, which is equivalent to voltage drive.

CH390L pin 2 and pin 9 can be connected or disconnected. C3 and C13 are optional but recommended.

The figure above shows the 16-bit parallel port mode without resistor R8. For 8-bit parallel port mode, resistor R8 is 6K8 or 4K7 pull-up.

11.3 Independent Voltage SPI Application

CH390H has built-in part of the oscillation capacitance of crystal X1, and C7 and C8 can be adjusted according to the crystal parameters. For X1 with a load capacitance of 12pF, C7 and C8 are not required; for X1 with a load capacitance of 20pF, C7 and C8 are recommended to be 15pF each.

T1 is an ethernet network transformer. Its center tap is connected to ground through capacitors C9 and C10 respectively. Do not connect to any power supply.

CH390H has a built-in Ethernet 50Ω impedance matching resistor. Do not connect an external 49.9 Ω or 50Ω resistor, which is equivalent to voltage drive.

CH390H pin 2 and pin 8 can be connected or disconnected. C3, C13, and C14 are optional but recommended.